Abstract:Many different worldwide initiatives are promoting the transformation from machine dominant manufacturing to digital manufacturing. Thus, to achieve a successful transformation to Industry 4.0 standard, manufacturing enterprises are required to implement a clear roadmap. However, Small and Medium Manufacturing Enterprises (SMEs) encounter many barriers and difficulties (economical, technical, cultural, etc.) in the implementation of Industry 4.0. Although several works deal with the incorporation of Industry 4.0 technologies in the area of the product and supply chain life cycles, which SMEs could use as reference, this is not the case for the customer life cycle. Thus, we present two contributions that can help the software engineers of those SMEs to incorporate Industry 4.0 technologies in the context of the customer life cycle. The first contribution is a methodology that can help those software engineers in the task of creating new software services, aligned with Industry 4.0, that allow to change how customers interact with enterprises and the experiences they have while interacting with them. The methodology details a set of stages that are divided into phases which in turn are made up of activities. It places special emphasis on the incorporation of semantics descriptions and 3D visualization in the implementation of those new services. The second contribution is a system developed for a real manufacturing scenario, using the proposed methodology, which allows to observe the possibilities that this kind of systems can offer to SMEs in two phases of the customer life cycle: Discover & Shop, and Use & Service.
Abstract:Semantically rich descriptions of manufacturing machines, offered in a machine-interpretable code, can provide interesting benefits in Industry 4.0 scenarios. However, the lack of that type of descriptions is evident. In this paper we present the development effort made to build an ontology, called ExtruOnt, for describing a type of manufacturing machine, more precisely, a type that performs an extrusion process (extruder). Although the scope of the ontology is restricted to a concrete domain, it could be used as a model for the development of other ontologies for describing manufacturing machines in Industry 4.0 scenarios. The terms of the ExtruOnt ontology provide different types of information related with an extruder, which are reflected in distinct modules that constitute the ontology. Thus, it contains classes and properties for expressing descriptions about components of an extruder, spatial connections, features, and 3D representations of those components, and finally the sensors used to capture indicators about the performance of this type of machine. The ontology development process has been carried out in close collaboration with domain experts.
Abstract:The growing trends in automation, Internet of Things, big data and cloud computing technologies have led to the fourth industrial revolution (Industry 4.0), where it is possible to visualize and identify patterns and insights, which results in a better understanding of the data and can improve the manufacturing process. However, many times, the task of data exploration results difficult for manufacturing experts because they might be interested in analyzing also data that does not appear in pre-designed visualizations and therefore they must be assisted by Information Technology experts. In this paper, we present a proposal materialized in a semantic-based visual query system developed for a real Industry 4.0 scenario that allows domain experts to explore and visualize data in a friendly way. The main novelty of the system is the combined use that it makes of captured data that are semantically annotated first, and a 2D customized digital representation of a machine that is also linked with semantic descriptions. Those descriptions are expressed using terms of an ontology, where, among others, the sensors that are used to capture indicators about the performance of a machine that belongs to a Industry 4.0 scenario have been modeled. Moreover, this semantic description allows to: formulate queries at a higher level of abstraction, provide customized graphical visualizations of the results based on the format and nature of the data, and download enriched data enabling further types of analysis.