Abstract:Improving global school connectivity is critical for ensuring inclusive and equitable quality education. To reliably estimate the cost of connecting schools, governments and connectivity providers require complete and accurate school location data - a resource that is often scarce in many low- and middle-income countries. To address this challenge, we propose a cost-effective, scalable approach to locating schools in high-resolution satellite images using weakly supervised deep learning techniques. Our best models, which combine vision transformers and convolutional neural networks, achieve AUPRC values above 0.96 across 10 pilot African countries. Leveraging explainable AI techniques, our approach can approximate the precise geographical coordinates of the school locations using only low-cost, classification-level annotations. To demonstrate the scalability of our method, we generate nationwide maps of school location predictions in African countries and present a detailed analysis of our results, using Senegal as our case study. Finally, we demonstrate the immediate usability of our work by introducing an interactive web mapping tool to streamline human-in-the-loop model validation efforts by government partners. This work successfully showcases the real-world utility of deep learning and satellite images for planning regional infrastructure and accelerating universal school connectivity.