Abstract:In this article, we consider the problem of approximating a finite set of data (usually huge in applications) by invariant subspaces generated through a small set of smooth functions. The invariance is either by translations under a full-rank lattice or through the action of crystallographic groups. Smoothness is ensured by stipulating that the generators belong to a Paley-Wiener space, that is selected in an optimal way based on the characteristics of the given data. To complete our investigation, we analyze the fundamental role played by the lattice in the process of approximation.
Abstract:We provide the construction of a set of square matrices whose translates and rotates provide a Parseval frame that is optimal for approximating a given dataset of images. Our approach is based on abstract harmonic analysis techniques. Optimality is considered with respect to the quadratic error of approximation of the images in the dataset with their projection onto a linear subspace that is invariant under translations and rotations. In addition, we provide an elementary and fully self-contained proof of optimality, and the numerical results from datasets of natural images.