Abstract:The new type of Coronavirus disease called COVID-19 continues to spread quite rapidly. Although it shows some specific symptoms, this disease, which can show different symptoms in almost every individual, has caused hundreds of thousands of patients to die. Although healthcare professionals work hard to prevent further loss of life, the rate of disease spread is very high. For this reason, the help of computer aided diagnosis (CAD) and artificial intelligence (AI) algorithms is vital. In this study, a method based on optimization of convolutional neural network (CNN) architecture, which is the most effective image analysis method of today, is proposed to fulfill the mentioned COVID-19 detection needs. First, COVID-19 images are trained using ResNet-50 and VGG-16 architectures. Then, features in the last layer of these two architectures are combined with feature fusion. These new image features matrices obtained with feature fusion are classified for COVID detection. A multi-layer perceptron (MLP) structure optimized by the whale optimization algorithm is used for the classification process. The obtained results show that the performance of the proposed framework is almost 4.5% higher than VGG-16 performance and almost 3.5% higher than ResNet-50 performance.
Abstract:Coronavirus (COVID-19) emerged towards the end of 2019. World Health Organization (WHO) was identified it as a global epidemic. Consensus occurred in the opinion that using Computerized Tomography (CT) techniques for early diagnosis of pandemic disease gives both fast and accurate results. It was stated by expert radiologists that COVID-19 displays different behaviours in CT images. In this study, a novel method was proposed as fusing and ranking deep features to detect COVID-19 in early phase. 16x16 (Subset-1) and 32x32 (Subset-2) patches were obtained from 150 CT images to generate sub-datasets. Within the scope of the proposed method, 3000 patch images have been labelled as CoVID-19 and No finding for using in training and testing phase. Feature fusion and ranking method have been applied in order to increase the performance of the proposed method. Then, the processed data was classified with a Support Vector Machine (SVM). According to other pre-trained Convolutional Neural Network (CNN) models used in transfer learning, the proposed method shows high performance on Subset-2 with 98.27% accuracy, 98.93% sensitivity, 97.60% specificity, 97.63% precision, 98.28% F1-score and 96.54% Matthews Correlation Coefficient (MCC) metrics.
Abstract:This study presents early phase detection of Coronavirus (COVID-19), which is named by World Health Organization (WHO), by machine learning methods. The detection process was implemented on abdominal Computed Tomography (CT) images. The expert radiologists detected from CT images that COVID-19 shows different behaviours from other viral pneumonia. Therefore, the clinical experts specify that COV\.ID-19 virus needs to be diagnosed in early phase. For detection of the COVID-19, four different datasets were formed by taking patches sized as 16x16, 32x32, 48x48, 64x64 from 150 CT images. The feature extraction process was applied to patches to increase the classification performance. Grey Level Co-occurrence Matrix (GLCM), Local Directional Pattern (LDP), Grey Level Run Length Matrix (GLRLM), Grey-Level Size Zone Matrix (GLSZM), and Discrete Wavelet Transform (DWT) algorithms were used as feature extraction methods. Support Vector Machines (SVM) classified the extracted features. 2-fold, 5-fold and 10-fold cross-validations were implemented during the classification process. Sensitivity, specificity, accuracy, precision, and F-score metrics were used to evaluate the classification performance. The best classification accuracy was obtained as 99.68% with 10-fold cross-validation and GLSZM feature extraction method.
Abstract:In this study, it is aimed to develop a deep learning application which detects types of garbage into trash in order to provide recyclability with vision system. Training and testing will be performed with image data consisting of several classes on different garbage types. The data set used during training and testing will be generated from original frames taken from garbage images. The data set used for deep learning structures has a total of 2527 images with 6 different classes. Half of these images in the data set were used for training process and remaining part were used for testing procedure. Also, transfer learning was used to obtain shorter training and test procedures with and higher accuracy. As fine-tuned models, Alexnet, VGG16, Googlenet and Resnet structures were carried. In order to test performance of classifiers, two different classifiers are used as Softmax and Support Vector Machines. 6 different type of trash images were correctly classified the highest accuracy with GoogleNet+SVM as 97.86%.