Abstract:Deep learning-based image matching methods are improved significantly during the recent years. Although these methods are reported to outperform the classical techniques, the performance of the classical methods is not examined in detail. In this study, we compare classical and learning-based methods by employing mutual nearest neighbor search with ratio test and optimizing the ratio test threshold to achieve the best performance on two different performance metrics. After a fair comparison, the experimental results on HPatches dataset reveal that the performance gap between classical and learning-based methods is not that significant. Throughout the experiments, we demonstrated that SuperGlue is the state-of-the-art technique for the image matching problem on HPatches dataset. However, if a single parameter, namely ratio test threshold, is carefully optimized, a well-known traditional method SIFT performs quite close to SuperGlue and even outperforms in terms of mean matching accuracy (MMA) under 1 and 2 pixel thresholds. Moreover, a recent approach, DFM, which only uses pre-trained VGG features as descriptors and ratio test, is shown to outperform most of the well-trained learning-based methods. Therefore, we conclude that the parameters of any classical method should be analyzed carefully before comparing against a learning-based technique.
Abstract:A novel image matching method is proposed that utilizes learned features extracted by an off-the-shelf deep neural network to obtain a promising performance. The proposed method uses pre-trained VGG architecture as a feature extractor and does not require any additional training specific to improve matching. Inspired by well-established concepts in the psychology area, such as the Mental Rotation paradigm, an initial warping is performed as a result of a preliminary geometric transformation estimate. These estimates are simply based on dense matching of nearest neighbors at the terminal layer of VGG network outputs of the images to be matched. After this initial alignment, the same approach is repeated again between reference and aligned images in a hierarchical manner to reach a good localization and matching performance. Our algorithm achieves 0.57 and 0.80 overall scores in terms of Mean Matching Accuracy (MMA) for 1 pixel and 2 pixels thresholds respectively on Hpatches dataset, which indicates a better performance than the state-of-the-art.