Indian Institute of Technology Gandhinagar
Abstract:Image Inpainting is one of the very popular tasks in the field of image processing with broad applications in computer vision. In various practical applications, images are often deteriorated by noise due to the presence of corrupted, lost, or undesirable information. There have been various restoration techniques used in the past with both classical and deep learning approaches for handling such issues. Some traditional methods include image restoration by filling gap pixels using the nearby known pixels or using the moving average over the same. The aim of this paper is to perform image inpainting using robust deep learning methods that use partial convolution layers.
Abstract:The entire world is engulfed in the fight against the COVID-19 pandemic, leading to a significant surge in research experiments, government policies, and social media discussions. A multi-modal information access and data visualization platform can play a critical role in supporting research aimed at understanding and developing preventive measures for the pandemic. In this paper, we present a multi-faceted AI-based search and visualization engine, CovidExplorer. Our system aims to help researchers understand current state-of-the-art COVID-19 research, identify research articles relevant to their domain, and visualize real-time trends and statistics of COVID-19 cases. In contrast to other existing systems, CovidExplorer also brings in India-specific topical discussions on social media to study different aspects of COVID-19. The system, demo video, and the datasets are available at http://covidexplorer.in.