Mitsubishi Electric Research Labs, Cambridge, MA, USA
Abstract:Superconducting Digital (SCD) technology offers significant potential for enhancing the performance of next generation large scale compute workloads. By leveraging advanced lithography and a 300 mm platform, SCD devices can reduce energy consumption and boost computational power. This paper presents a cross-layer modeling approach to evaluate the system-level performance benefits of SCD architectures for Large Language Model (LLM) training and inference. Our findings, based on experimental data and Pulse Conserving Logic (PCL) design principles, demonstrate substantial performance gain in both training and inference. We are, thus, able to convincingly show that the SCD technology can address memory and interconnect limitations of present day solutions for next-generation compute systems.
Abstract:This study reports a novel hardware-friendly modular architecture for implementing one dimensional convolutional neural network (1D-CNN) digital predistortion (DPD) technique to linearize RF power amplifier (PA) real-time.The modular nature of our design enables DPD system adaptation for variable resource and timing constraints.Our work also presents a co-simulation architecture to verify the DPD performance with an actual power amplifier hardware-in-the-loop.The experimental results with 100 MHz signals show that the proposed 1D-CNN obtains superior performance compared with other neural network architectures for real-time DPD application.