Abstract:Internet of Things and its applications are becoming commonplace with more devices, but always at risk of network security. It is therefore crucial for an IoT network design to identify attackers accurately, quickly and promptly. Many solutions have been proposed, mainly concerning secure IoT architectures and classification algorithms, but none of them have paid enough attention to reducing the complexity. Our proposal in this paper is an edge cloud architecture that fulfills the detection task right at the edge layer, near the source of the attacks for quick response, versatility, as well as reducing the workload of the cloud. We also propose a multi attack detection mechanism called LocKedge Low Complexity Cyberattack Detection in IoT Edge Computing, which has low complexity for deployment at the edge zone while still maintaining high accuracy. LocKedge is implemented in two manners: centralized and federated learning manners in order to verify the performance of the architecture from different perspectives. The performance of our proposed mechanism is compared with that of other machine learning and deep learning methods using the most updated BoT IoT data set. The results show that LocKedge outperforms other algorithms such as NN, CNN, RNN, KNN, SVM, KNN, RF and Decision Tree in terms of accuracy and NN in terms of complexity.
Abstract:Software Defined Networking (SDN) enables flexible and scalable network control and management. However, it also introduces new vulnerabilities that can be exploited by attackers. In particular, low-rate and slow or stealthy Denial-of-Service (DoS) attacks are recently attracting attention from researchers because of their detection challenges. In this paper, we propose a novel machine learning based defense framework named Q-MIND, to effectively detect and mitigate stealthy DoS attacks in SDN-based networks. We first analyze the adversary model of stealthy DoS attacks, the related vulnerabilities in SDN-based networks and the key characteristics of stealthy DoS attacks. Next, we describe and analyze an anomaly detection system that uses a Reinforcement Learning-based approach based on Q-Learning in order to maximize its detection performance. Finally, we outline the complete Q-MIND defense framework that incorporates the optimal policy derived from the Q-Learning agent to efficiently defeat stealthy DoS attacks in SDN-based networks. An extensive comparison of the Q-MIND framework and currently existing methods shows that significant improvements in attack detection and mitigation performance are obtained by Q-MIND.