Abstract:High-Frequency (HF) radar is well suited to the surveillance of low-earth-orbit space. For large targets, a small deployable HF radar is able to match the detection performance of much larger space surveillance radar systems operating at higher frequencies. However, there are some unique challenges associated with the use of HF, including the range--Doppler coupling bias, coarse detection-level localisation, and the presence of meteor returns and other unwanted signals. This paper details the use of HF radar for space surveillance, including signal processing and radar product formation, tracking, ionospheric correction, and orbit determination. It is shown that by fusing measurements from multiple passes, accurate orbital estimates can be obtained. Included are results from recent SpaceFest trials of the Defence Science and Technology Group's HF space surveillance radar, achieving real-time wide-area surveillance in tracking, orbit determination, and cueing of other space surveillance sensors.