Abstract:A large number of image super resolution algorithms based on the sparse coding are proposed, and some algorithms realize the multi-frame super resolution. In multi-frame super resolution based on the sparse coding, both accurate image registration and sparse coding are required. Previous study on multi-frame super resolution based on sparse coding firstly apply block matching for image registration, followed by sparse coding to enhance the image resolution. In this paper, these two problems are solved by optimizing a single objective function. The results of numerical experiments support the effectiveness of the proposed approch.
Abstract:An image super-resolution method from multiple observation of low-resolution images is proposed. The method is based on sub-pixel accuracy block matching for estimating relative displacements of observed images, and sparse signal representation for estimating the corresponding high-resolution image. Relative displacements of small patches of observed low-resolution images are accurately estimated by a computationally efficient block matching method. Since the estimated displacements are also regarded as a warping component of image degradation process, the matching results are directly utilized to generate low-resolution dictionary for sparse image representation. The matching scores of the block matching are used to select a subset of low-resolution patches for reconstructing a high-resolution patch, that is, an adaptive selection of informative low-resolution images is realized. When there is only one low-resolution image, the proposed method works as a single-frame super-resolution method. The proposed method is shown to perform comparable or superior to conventional single- and multi-frame super-resolution methods through experiments using various real-world datasets.