Abstract:In this study, we propose Explainable Multimodal Machine Learning (EMML), which integrates the analysis of diverse data types (multimodal data) using factor analysis for feature extraction with Explainable AI (XAI), for carbon nanotube (CNT) fibers prepared from aqueous dispersions. This method is a powerful approach to elucidate the mechanisms governing material properties, where multi-stage fabrication conditions and multiscale structures have complex influences. Thus, in our case, this approach helps us understand how different processing steps and structures at various scales impact the final properties of CNT fibers. The analysis targeted structures ranging from the nanoscale to the macroscale, including aggregation size distributions of CNT dispersions and the effective length of CNTs. Furthermore, because some types of data were difficult to interpret using standard methods, challenging-to-interpret distribution data were analyzed using Negative Matrix Factorization (NMF) for extracting key features that determine the outcome. Contribution analysis with SHapley Additive exPlanations (SHAP) demonstrated that small, uniformly distributed aggregates are crucial for improving fracture strength, while CNTs with long effective lengths are significant factors for enhancing electrical conductivity. The analysis also identified thresholds and trends for these key factors to assist in defining the conditions needed to optimize CNT fiber properties. EMML is not limited to CNT fibers but can be applied to the design of other materials derived from nanomaterials, making it a useful tool for developing a wide range of advanced materials. This approach provides a foundation for advancing data-driven materials research.
Abstract:We propose tabular two-dimensional correlation analysis for extracting features from multifaceted characterization data, essential for understanding material properties. This method visualizes similarities and phase lags in structural parameter changes through heatmaps, combining hierarchical clustering and asynchronous correlations. We applied the proposed method to datasets of carbon nanotube (CNTs) films annealed at various temperatures and revealed the complexity of their hierarchical structures, which include elements like voids, bundles, and amorphous carbon. Our analysis addresses the challenge of attempting to understand the sequence of structural changes, especially in multifaceted characterization data where 11 structural parameters derived from 8 characterization methods interact with complex behavior. The results show how phase lags (asynchronous changes from stimuli) and parameter similarities can illuminate the sequence of structural changes in materials, providing insights into phenomena like the removal of amorphous carbon and graphitization in annealed CNTs. This approach is beneficial even with limited data and holds promise for a wide range of material analyses, demonstrating its potential in elucidating complex material behaviors and properties.