Abstract:This paper offers a comprehensive review of one-class classification (OCC), examining the technologies and methodologies employed in its implementation. It delves into various approaches utilized for OCC across diverse data types, such as feature data, image, video, time series, and others. Through a systematic review, this paper synthesizes promi-nent strategies used in OCC from its inception to its current advance-ments, with a particular emphasis on the promising application. Moreo-ver, the article criticizes the state-of-the-art (SOTA) image anomaly de-tection (AD) algorithms dominating one-class experiments. These algo-rithms include outlier exposure (binary classification) and pretrained model (multi-class classification), conflicting with the fundamental con-cept of learning from one class. Our investigation reveals that the top nine algorithms for one-class CIFAR10 benchmark are not OCC. We ar-gue that binary/multi-class classification algorithms should not be com-pared with OCC.
Abstract:Supervised learning requires a sufficient training dataset which includes all label. However, there are cases that some class is not in the training data. Zero-Shot Learning (ZSL) is the task of predicting class that is not in the training data(target class). The existing ZSL method is done for image data. However, the zero-shot problem should happen to every data type. Hence, considering ZSL for other data types is required. In this paper, we propose the cluster-based ZSL method, which is a baseline method for multivariate binary classification problems. The proposed method is based on the assumption that if data is far from training data, the data is considered as target class. In training, clustering is done for training data. In prediction, the data is determined belonging to a cluster or not. If data does not belong to a cluster, the data is predicted as target class. The proposed method is evaluated and demonstrated using the KEEL dataset.