Abstract:Cancelable biometric schemes are designed to extract an identity-preserving, non-invertible as well as revocable pseudo-identifier from biometric data. Recognition systems need to store only this pseudo-identifier, to avoid tampering and/or stealing of original biometric data during the recognition process. State-of-the-art cancelable schemes generate pseudo-identifiers by transforming the original template using either user-specific salting or many-to-one transformations. In addition to the performance concerns, most of such schemes are modality-specific and prone to reconstruction attacks as there are chances for unauthorized access to security-critical transformation keys. A novel, modality-independent cancelable biometric scheme is proposed to overcome these limitations. In this scheme, a cancelable template (pseudo identifier) is generated as a distance vector between multiple random transformations of the biometric feature vector. These transformations were done by grouping feature vector components based on a set of user-specific random vectors. The proposed scheme nullifies the possibility of template reconstruction as the generated cancelable template contains only the distance values between the different random transformations of the feature vector and it does not store any details of the biometric template. The recognition performance of the proposed scheme is evaluated for face and fingerprint modalities. Equal Error Rate (EER) of 1.5 is obtained for face and 1.7 is obtained for the fingerprint in the worst case.
Abstract:The rise of the industrial metaverse has brought digital twins (DTs) to the forefront. Blockchain-powered non-fungible tokens (NFTs) offer a decentralized approach to creating and owning these cloneable DTs. However, the potential for unauthorized duplication, or counterfeiting, poses a significant threat to the security of NFT-DTs. Existing NFT clone detection methods often rely on static information like metadata and images, which can be easily manipulated. To address these limitations, we propose a novel deep-learning-based solution as a combination of an autoencoder and RNN-based classifier. This solution enables real-time pattern recognition to detect fake NFT-DTs. Additionally, we introduce the concept of dynamic metadata, providing a more reliable way to verify authenticity through AI-integrated smart contracts. By effectively identifying counterfeit DTs, our system contributes to strengthening the security of NFT-based assets in the metaverse.