Abstract:Climate studies often rely on remotely sensed images to retrieve two-dimensional maps of cloud properties. To advance volumetric analysis, we focus on recovering the three-dimensional (3D) heterogeneous extinction coefficient field of shallow clouds using multiview remote sensing data. Climate research requires large-scale worldwide statistics. To enable scalable data processing, previous deep neural networks (DNNs) can infer at spaceborne remote sensing downlink rates. However, prior methods are limited to a fixed solar illumination direction. In this work, we introduce the first scalable DNN-based system for 3D cloud retrieval that accommodates varying camera poses and solar directions. By integrating multiview cloud intensity images with camera poses and solar direction data, we achieve greater flexibility in recovery. Training of the DNN is performed by a novel two-stage scheme to address the high number of degrees of freedom in this problem. Our approach shows substantial improvements over previous state-of-the-art, particularly in handling variations in the sun's zenith angle.