Abstract:The k-center problem is a fundamental problem we often face when considering complex service systems. Typical challenges include the placement of warehouses in logistics or positioning of servers for content delivery networks. We previously have proposed Dragoon as an effective algorithm to approach the k-center problem. This paper evaluates Dragoon with a focus on potential worst case behavior in comparison to other techniques. We use an evolutionary algorithm to generate instances of the k-center problem that are especially challenging for Dragoon. Ultimately, our experiments confirm the previous good results of Dragoon, however, we also can reliably find scenarios where it is clearly outperformed by other approaches.
Abstract:Complex scheduling problems require a large amount computation power and innovative solution methods. The objective of this paper is the conception and implementation of a multi-agent system that is applicable in various problem domains. Independent specialized agents handle small tasks, to reach a superordinate target. Effective coordination is therefore required to achieve productive cooperation. Role models and distributed artificial intelligence are employed to tackle the resulting challenges. We simulate a NP-hard scheduling problem to demonstrate the validity of our approach. In addition to the general agent based framework we propose new simulation-based optimization heuristics to given scheduling problems. Two of the described optimization algorithms are implemented using agents. This paper highlights the advantages of the agent-based approach, like the reduction in layout complexity, improved control of complicated systems, and extendability.