Abstract:Most datasets used for supervised machine learning consist of a single label per data point. However, in cases where more information than just the class label is available, would it be possible to train models more efficiently? We introduce two novel model architectures, which we call hybrid concept-based models, that train using both class labels and additional information in the dataset referred to as concepts. In order to thoroughly assess their performance, we introduce ConceptShapes, an open and flexible class of datasets with concept labels. We show that the hybrid concept-based models outperform standard computer vision models and previously proposed concept-based models with respect to accuracy, especially in sparse data settings. We also introduce an algorithm for performing adversarial concept attacks, where an image is perturbed in a way that does not change a concept-based model's concept predictions, but changes the class prediction. The existence of such adversarial examples raises questions about the interpretable qualities promised by concept-based models.
Abstract:Despite recent success in natural language processing (NLP), fact verification still remains a difficult task. Due to misinformation spreading increasingly fast, attention has been directed towards automatically verifying the correctness of claims. In the domain of NLP, this is usually done by training supervised machine learning models to verify claims by utilizing evidence from trustworthy corpora. We present efficient methods for verifying claims on a dataset where the evidence is in the form of structured knowledge graphs. We use the FactKG dataset, which is constructed from the DBpedia knowledge graph extracted from Wikipedia. By simplifying the evidence retrieval process, from fine-tuned language models to simple logical retrievals, we are able to construct models that both require less computational resources and achieve better test-set accuracy.