Abstract:This paper proposes a novel semi-self sensing hybrid reconfigurable intelligent surface (SS-HRIS) in terahertz (THz) bands, where the RIS is equipped with reflecting elements divided between passive and active elements in addition to sensing elements. SS-HRIS along with integrated sensing and communications (ISAC) can help to mitigate the multipath attenuation that is abundant in THz bands. In our proposed scheme, sensors are configured at the SS-HRIS to receive the radar echo signal from a target. A joint base station (BS) beamforming and HRIS precoding matrix optimization problem is proposed to maximize the sum rate of communication users while maintaining satisfactory sensing performance measured by the Cramer-Rao bound (CRB) for estimating the direction of angles of arrival (AoA) of the echo signal and thermal noise at the target. The CRB expression is first derived and the sum rate maximization problem is formulated subject to communication and sensing performance constraints. To solve the complex non-convex optimization problem, deep deterministic policy gradient (DDPG)-based deep reinforcement learning (DRL) algorithm is proposed, where the reward function, the action space and the state space are modeled. Simulation results show that the proposed DDPG-based DRL algorithm converges well and achieves better performance than several baselines, such as the soft actor-critic (SAC), proximal policy optimization (PPO), greedy algorithm and random BS beamforming and HRIS precoding matrix schemes. Moreover, it demonstrates that adopting HRIS significantly enhances the achievable sum rate compared to passive RIS and random BS beamforming and HRIS precoding matrix schemes.
Abstract:This paper presents a novel heuristic deep reinforcement learning (HDRL) framework designed to optimize reconfigurable intelligent surface (RIS) phase shifts in secure satellite communication systems utilizing rate splitting multiple access (RSMA). The proposed HDRL approach addresses the challenges of large action spaces inherent in deep reinforcement learning by integrating heuristic algorithms, thus improving exploration efficiency and leading to faster convergence toward optimal solutions. We validate the effectiveness of HDRL through comprehensive simulations, demonstrating its superiority over traditional algorithms, including random phase shift, greedy algorithm, exhaustive search, and Deep Q-Network (DQN), in terms of secure sum rate and computational efficiency. Additionally, we compare the performance of RSMA with non-orthogonal multiple access (NOMA), highlighting that RSMA, particularly when implemented with an increased number of RIS elements, significantly enhances secure communication performance. The results indicate that HDRL is a powerful tool for improving the security and reliability of RSMA satellite communication systems, offering a practical balance between performance and computational demands.
Abstract:The integration of unmanned aerial vehicles (UAVs) with mobile edge computing (MEC) and Internet of Things (IoT) technology in smart farms is pivotal for efficient resource management and enhanced agricultural productivity sustainably. This paper addresses the critical need for optimizing task offloading in secure UAV-assisted smart farm networks, aiming to reduce total delay and energy consumption while maintaining robust security in data communications. We propose a multi-agent deep reinforcement learning (DRL)-based approach using a deep double Q-network (DDQN) with an action mask (AM), designed to manage task offloading dynamically and efficiently. The simulation results demonstrate the superior performance of our method in managing task offloading, highlighting significant improvements in operational efficiency by reducing delay and energy consumption. This aligns with the goal of developing sustainable and energy-efficient solutions for next-generation network infrastructures, making our approach an advanced solution for achieving both performance and sustainability in smart farming applications.