David
Abstract:Multiscale simulations are indispensable for connecting microstructural features to the macroscopic behavior of polycrystalline materials, but their high computational demands limit their practicality. Deep material networks (DMNs) have been proposed as efficient surrogate models, yet they fall short of capturing texture evolution. To address this limitation, we propose the orientation-aware interaction-based deep material network (ODMN), which incorporates an orientation-aware mechanism and an interaction mechanism grounded in the Hill-Mandel principle. The orientation-aware mechanism learns the crystallographic textures, while the interaction mechanism captures stress-equilibrium directions among representative volume element (RVE) subregions, offering insight into internal microstructural mechanics. Notably, ODMN requires only linear elastic data for training yet generalizes effectively to complex nonlinear and anisotropic responses. Our results show that ODMN accurately predicts both mechanical responses and texture evolution under complex plastic deformation, thus expanding the applicability of DMNs to polycrystalline materials. By balancing computational efficiency with predictive fidelity, ODMN provides a robust framework for multiscale simulations of polycrystalline materials.
Abstract:The rapid advancement of machine learning has unlocked numerous opportunities for materials science, particularly in accelerating the design and analysis of materials. However, a significant challenge lies in the scarcity and high cost of obtaining high-quality materials datasets. In other fields, such as natural language processing, foundation models pre-trained on large datasets have achieved exceptional success in transfer learning, effectively leveraging latent features to achieve high performance on tasks with limited data. Despite this progress, the concept of foundation models remains underexplored in materials science. Here, we present a foundation model specifically designed for composite materials. Our model is pre-trained on a dataset of short-fiber composites to learn robust latent features. During transfer learning, the MMAE accurately predicts homogenized stiffness, with an R2 score reaching as high as 0.959 and consistently exceeding 0.91, even when trained on limited data. These findings validate the feasibility and effectiveness of foundation models in composite materials. We anticipate extending this approach to more complex three-dimensional composite materials, polycrystalline materials, and beyond. Moreover, this framework enables high-accuracy predictions even when experimental data are scarce, paving the way for more efficient and cost-effective materials design and analysis.