Abstract:Long-tailed class distributions are prevalent among the practical applications of object detection and instance segmentation. Prior work in long-tail instance segmentation addresses the imbalance of losses between rare and frequent categories by reducing the penalty for a model incorrectly predicting a rare class label. We demonstrate that the rare categories are heavily suppressed by correct background predictions, which reduces the probability for all foreground categories with equal weight. Due to the relative infrequency of rare categories, this leads to an imbalance that biases towards predicting more frequent categories. Based on this insight, we develop DropLoss -- a novel adaptive loss to compensate for this imbalance without a trade-off between rare and frequent categories. With this loss, we show state-of-the-art mAP across rare, common, and frequent categories on the LVIS dataset.
Abstract:This paper aims to tackle the challenging problem of one-shot object detection. Given a query image patch whose class label is not included in the training data, the goal of the task is to detect all instances of the same class in a target image. To this end, we develop a novel {\em co-attention and co-excitation} (CoAE) framework that makes contributions in three key technical aspects. First, we propose to use the non-local operation to explore the co-attention embodied in each query-target pair and yield region proposals accounting for the one-shot situation. Second, we formulate a squeeze-and-co-excitation scheme that can adaptively emphasize correlated feature channels to help uncover relevant proposals and eventually the target objects. Third, we design a margin-based ranking loss for implicitly learning a metric to predict the similarity of a region proposal to the underlying query, no matter its class label is seen or unseen in training. The resulting model is therefore a two-stage detector that yields a strong baseline on both VOC and MS-COCO under one-shot setting of detecting objects from both seen and never-seen classes. Codes are available at https://github.com/timy90022/One-Shot-Object-Detection.