Abstract:Learning therapeutic counseling involves significant role-play experience with mock patients, with current manual training methods providing only intermittent granular feedback. We seek to accelerate and optimize counselor training by providing frequent, detailed feedback to trainees as they interact with a simulated patient. Our first application domain involves training motivational interviewing skills for counselors. Motivational interviewing is a collaborative counseling style in which patients are guided to talk about changing their behavior, with empathetic counseling an essential ingredient. We developed and evaluated an LLM-powered training system that features a simulated patient and visualizations of turn-by-turn performance feedback tailored to the needs of counselors learning motivational interviewing. We conducted an evaluation study with professional and student counselors, demonstrating high usability and satisfaction with the system. We present design implications for the development of automated systems that train users in counseling skills and their generalizability to other types of social skills training.
Abstract:We introduce a novel application of large language models (LLMs) in developing a virtual counselor capable of conducting motivational interviewing (MI) for alcohol use counseling. Access to effective counseling remains limited, particularly for substance abuse, and virtual agents offer a promising solution by leveraging LLM capabilities to simulate nuanced communication techniques inherent in MI. Our approach combines prompt engineering and integration into a user-friendly virtual platform to facilitate realistic, empathetic interactions. We evaluate the effectiveness of our virtual agent through a series of studies focusing on replicating MI techniques and human counselor dialog. Initial findings suggest that our LLM-powered virtual agent matches human counselors' empathetic and adaptive conversational skills, presenting a significant step forward in virtual health counseling and providing insights into the design and implementation of LLM-based therapeutic interactions.