Abstract:Game development is a long process that involves many stages before a product is ready for the market. Human play testing is among the most time consuming, as testers are required to repeatedly perform tasks in the search for errors in the code. Therefore, automated testing is seen as a key technology for the gaming industry, as it would dramatically improve development costs and efficiency. Toward this end, we propose EVOLUTE, a novel imitation learning-based architecture that combines behavioural cloning (BC) with energy based models (EBMs). EVOLUTE is a two-stream ensemble model that splits the action space of autonomous agents into continuous and discrete tasks. The EBM stream handles the continuous tasks, to have a more refined and adaptive control, while the BC stream handles discrete actions, to ease training. We evaluate the performance of EVOLUTE in a shooting-and-driving game, where the agent is required to navigate and continuously identify targets to attack. The proposed model has higher generalisation capabilities than standard BC approaches, showing a wider range of behaviours and higher performances. Also, EVOLUTE is easier to train than a pure end-to-end EBM model, as discrete tasks can be quite sparse in the dataset and cause model training to explore a much wider set of possible actions while training.
Abstract:This paper describes methods for training autonomous agents to play the game "Doom 2" through Imitation Learning (IL) using only pixel data as input. We also explore how Reinforcement Learning (RL) compares to IL for humanness by comparing camera movement and trajectory data. Through behavioural cloning, we examine the ability of individual models to learn varying behavioural traits. We attempt to mimic the behaviour of real players with different play styles, and find we can train agents that behave aggressively, passively, or simply more human-like than traditional AIs. We propose these methods of introducing more depth and human-like behaviour to agents in video games. The trained IL agents perform on par with the average players in our dataset, whilst outperforming the worst players. While performance was not as strong as common RL approaches, it provides much stronger human-like behavioural traits to the agent.