Abstract:This study aims to elucidate the significance of long-range correlations for deep-learning-based sleep staging. It is centered around S4Sleep(TS), a recently proposed model for automated sleep staging. This model utilizes electroencephalography (EEG) as raw time series input and relies on structured state space sequence (S4) models as essential model component. Although the model already surpasses state-of-the-art methods for a moderate number of 15 input epochs, recent literature results suggest potential benefits from incorporating very long correlations spanning hundreds of input epochs. In this submission, we explore the possibility of achieving further enhancements by systematically scaling up the model's input size, anticipating potential improvements in prediction accuracy. In contrast to findings in literature, our results demonstrate that augmenting the input size does not yield a significant enhancement in the performance of S4Sleep(TS). These findings, coupled with the distinctive ability of S4 models to capture long-range dependencies in time series data, cast doubt on the diagnostic relevance of very long-range interactions for sleep staging.
Abstract:Scoring sleep stages in polysomnography recordings is a time-consuming task plagued by significant inter-rater variability. Therefore, it stands to benefit from the application of machine learning algorithms. While many algorithms have been proposed for this purpose, certain critical architectural decisions have not received systematic exploration. In this study, we meticulously investigate these design choices within the broad category of encoder-predictor architectures. We identify robust architectures applicable to both time series and spectrogram input representations. These architectures incorporate structured state space models as integral components, leading to statistically significant advancements in performance on the extensive SHHS dataset. These improvements are assessed through both statistical and systematic error estimations. We anticipate that the architectural insights gained from this study will not only prove valuable for future research in sleep staging but also hold relevance for other time series annotation tasks.