Abstract:Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.




Abstract:In recent years, various methods and benchmarks have been proposed to empirically evaluate the alignment of artificial neural networks to human neural and behavioral data. But how aligned are different alignment metrics? To answer this question, we analyze visual data from Brain-Score (Schrimpf et al., 2018), including metrics from the model-vs-human toolbox (Geirhos et al., 2021), together with human feature alignment (Linsley et al., 2018; Fel et al., 2022) and human similarity judgements (Muttenthaler et al., 2022). We find that pairwise correlations between neural scores and behavioral scores are quite low and sometimes even negative. For instance, the average correlation between those 80 models on Brain-Score that were fully evaluated on all 69 alignment metrics we considered is only 0.198. Assuming that all of the employed metrics are sound, this implies that alignment with human perception may best be thought of as a multidimensional concept, with different methods measuring fundamentally different aspects. Our results underline the importance of integrative benchmarking, but also raise questions about how to correctly combine and aggregate individual metrics. Aggregating by taking the arithmetic average, as done in Brain-Score, leads to the overall performance currently being dominated by behavior (95.25% explained variance) while the neural predictivity plays a less important role (only 33.33% explained variance). As a first step towards making sure that different alignment metrics all contribute fairly towards an integrative benchmark score, we therefore conclude by comparing three different aggregation options.
Abstract:In light of the recent widespread adoption of AI systems, understanding the internal information processing of neural networks has become increasingly critical. Most recently, machine vision has seen remarkable progress by scaling neural networks to unprecedented levels in dataset and model size. We here ask whether this extraordinary increase in scale also positively impacts the field of mechanistic interpretability. In other words, has our understanding of the inner workings of scaled neural networks improved as well? We here use a psychophysical paradigm to quantify mechanistic interpretability for a diverse suite of models and find no scaling effect for interpretability - neither for model nor dataset size. Specifically, none of the nine investigated state-of-the-art models are easier to interpret than the GoogLeNet model from almost a decade ago. Latest-generation vision models appear even less interpretable than older architectures, hinting at a regression rather than improvement, with modern models sacrificing interpretability for accuracy. These results highlight the need for models explicitly designed to be mechanistically interpretable and the need for more helpful interpretability methods to increase our understanding of networks at an atomic level. We release a dataset containing more than 120'000 human responses from our psychophysical evaluation of 767 units across nine models. This dataset is meant to facilitate research on automated instead of human-based interpretability evaluations that can ultimately be leveraged to directly optimize the mechanistic interpretability of models.