Institute of Radio Frequency Engineering and Electronics
Abstract:We propose and demonstrate a novel scheme for optical arbitrary waveform measurement (OAWM) that exploits chip-scale Kerr soliton combs as highly scalable multiwavelength local oscillators (LO) for ultra-broadband full-field waveform acquisition. In contrast to earlier concepts, our approach does not require any optical slicing filters and thus lends itself to efficient implementation on state-of-the-art high-index-contrast integration platforms such as silicon photonics. The scheme allows to measure truly arbitrary waveforms with high accuracy, based on a dedicated system model which is calibrated by means of a femtosecond laser with known pulse shape. We demonstrated the viability of the approach in a proof-of-concept experiment by capturing an optical waveform that contains multiple 16 QAM and 64 QAM wavelength-division multiplexed (WDM) data signals with symbol rates of up to 80 GBd, reaching overall line rates of up to 1.92 Tbit/s within an optical acquisition bandwidth of 610 GHz. To the best of our knowledge, this is the highest bandwidth that has so far been demonstrated in an OAWM experiment.