Abstract:Cocoa is a multi-billion-dollar industry but research on improving yields through pollination remains limited. New embedded hardware and AI-based data analysis is advancing information on cocoa flower visitors, their identity and implications for yields. We present the first cocoa flower visitor dataset containing 5,792 images of Ceratopogonidae, Formicidae, Aphididae, Araneae, and Encyrtidae, and 1,082 background cocoa flower images. This dataset was curated from 23 million images collected over two years by embedded cameras in cocoa plantations in Hainan province, China. We exemplify the use of the dataset with different sizes of YOLOv8 models and by progressively increasing the background image ratio in the training set to identify the best-performing model. The medium-sized YOLOv8 model achieved the best results with 8% background images (F1 Score of 0.71, mAP50 of 0.70). Overall, this dataset is useful to compare the performance of deep learning model architectures on images with low contrast images and difficult detection targets. The data can support future efforts to advance sustainable cocoa production through pollination monitoring projects.
Abstract:Convolutional Neural Networks (CNN) for image recognition tasks are seeing rapid advances in the available architectures and how networks are trained based on large computational infrastructure and standard datasets with millions of images. In contrast, performance and time constraints for example, of small devices and free cloud GPUs necessitate efficient network training (i.e., highest accuracy in the shortest inference time possible), often on small datasets. Here, we hypothesize that initially decreasing image size during training makes the training process more efficient, because pre-shaping weights with small images and later utilizing these weights with larger images reduces initial network parameters and total inference time. We test this Efficient Network TRaining (ENTR) Hypothesis by training pre-trained Residual Network (ResNet) models (ResNet18, 34, & 50) on three small datasets (steel microstructures, bee images, and geographic aerial images) with a free cloud GPU. Based on three training regimes of i) not, ii) gradually or iii) in one step increasing image size over the training process, we show that initially reducing image size increases training efficiency consistently across datasets and networks. We interpret these results mechanistically in the framework of regularization theory. Support for the ENTR hypothesis is an important contribution, because network efficiency improvements for image recognition tasks are needed for practical applications. In the future, it will be exciting to see how the ENTR hypothesis holds for large standard datasets like ImageNet or CIFAR, to better understand the underlying mechanisms, and how these results compare to other fields such as structural learning.