Abstract:Cross-Technology Interference (CTI) poses challenges for the performance and robustness of wireless networks. There are opportunities for better cooperation if the spectral occupation and technology of the interference can be detected. Namely, this information can help the Orthogonal Frequency Division Multiple Access (OFDMA) scheduler in IEEE 802.11ax (Wi-Fi 6) to efficiently allocate resources to multiple users inthe frequency domain. This work shows that a single Channel State Information (CSI) snapshot, which is used for packet demodulation in the receiver, is enough to detect and classify the type of CTI on low-cost Wi-Fi 6 hardware. We show the classification accuracy of a small Convolutional Neural Network (CNN) for different Signal-to-Noise Ratio (SNR) and Signal-to-Interference Ratio (SIR) with simulated data, as well as using a wired and over-the-air test with a professional wireless connectivity tester, while running the inference on the low-cost device. Furthermore, we use openwifi, a full-stack Wi-Fi transceiver running on software-defined radio (SDR) available in the w-iLab.t testbed, as Access Point (AP) to implement a CTI-aware multi-user OFDMA scheduler when the clients send CTI detection feedback to the AP. We show experimentally that it can fully mitigate the 35% throughput loss caused by CTI when the AP applies the appropriate scheduling.