Abstract:A hover-capable insect-inspired flying robot that can remain long in the air has shown its potential use for both confined indoor and outdoor applications to complete assigned tasks. In this letter, we report improvements in the flight endurance of our 15.8 g robot, named KUBeetle-S, using a low-voltage power source. The robot is equipped with a simple but effective control mechanism that can modulate the stroke plane for attitude stabilization and control. Due to the demand for extended flight, we performed a series of experiments on the lift generation and power requirement of the robot with different stroke amplitudes and wing areas. We show that a larger wing with less inboard wing area improves the lift-to-power ratio and produces a peak lift-to-weight ratio of 1.34 at 3.7 V application. Flight tests show that the robot employing the selected wing could hover for 8.8 minutes. Moreover, the robot could perform maneuvers in any direction and fly outdoors, demonstrating its ability to enter the next phase of autonomous flight.