Abstract:The team formation problem assumes a set of experts and a task, where each expert has a set of skills and the task requires some skills. The objective is to find a set of experts that maximizes coverage of the required skills while simultaneously minimizing the costs associated with the experts. Different definitions of cost have traditionally led to distinct problem formulations and algorithmic solutions. We introduce the unified TeamFormation formulation that captures all cost definitions for team formation problems that balance task coverage and expert cost. Specifically, we formulate three TeamFormation variants with different cost functions using quadratic unconstrained binary optimization (QUBO), and we evaluate two distinct general-purpose solution methods. We show that solutions based on the QUBO formulations of TeamFormation problems are at least as good as those produced by established baselines. Furthermore, we show that QUBO-based solutions leveraging graph neural networks can effectively learn representations of experts and skills to enable transfer learning, allowing node embeddings from one problem instance to be efficiently applied to another.
Abstract:Recent research suggests that it may be possible to build conscious AI systems now or in the near future. Conscious AI systems would arguably deserve moral consideration, and it may be the case that large numbers of conscious systems could be created and caused to suffer. Furthermore, AI systems or AI-generated characters may increasingly give the impression of being conscious, leading to debate about their moral status. Organisations involved in AI research must establish principles and policies to guide research and deployment choices and public communication concerning consciousness. Even if an organisation chooses not to study AI consciousness as such, it will still need policies in place, as those developing advanced AI systems risk inadvertently creating conscious entities. Responsible research and deployment practices are essential to address this possibility. We propose five principles for responsible research and argue that research organisations should make voluntary, public commitments to principles on these lines. Our principles concern research objectives and procedures, knowledge sharing and public communications.