Abstract:Using graph models with relational information in recommender systems has shown promising results. Yet, most methods are transductive, i.e., they are based on dimensionality reduction architectures. Hence, they require heavy retraining every time new items or users are added. Conversely, inductive methods promise to solve these issues. Nonetheless, all inductive methods rely only on interactions, making recommendations for users with few interactions sub-optimal and even impossible for new items. Therefore, we focus on inductive methods able to also exploit knowledge graphs (KGs). In this work, we propose SimpleRec, a strong baseline that uses a graph neural network and a KG to provide better recommendations than related inductive methods for new users and items. We show that it is unnecessary to create complex model architectures for user representations, but it is enough to allow users to be represented by the few ratings they provide and the indirect connections among them without any user metadata. As a result, we re-evaluate state-of-the-art methods, identify better evaluation protocols, highlight unwarranted conclusions from previous proposals, and showcase a novel, stronger baseline for this task.
Abstract:Knowledge Graphs (KGs) have been integrated in several models of recommendation to augment the informational value of an item by means of its related entities in the graph. Yet, existing datasets only provide explicit ratings on items and no information is provided about user opinions of other (non-recommendable) entities. To overcome this limitation, we introduce a new dataset, called the MindReader, providing explicit user ratings both for items and for KG entities. In this first version, the MindReader dataset provides more than 102 thousands explicit ratings collected from 1,174 real users on both items and entities from a KG in the movie domain. This dataset has been collected through an online interview application that we also release open source. As a demonstration of the importance of this new dataset, we present a comparative study of the effect of the inclusion of ratings on non-item KG entities in a variety of state-of-the-art recommendation models. In particular, we show that most models, whether designed specifically for graph data or not, see improvements in recommendation quality when trained on explicit non-item ratings. Moreover, for some models, we show that non-item ratings can effectively replace item ratings without loss of recommendation quality. This finding, thanks also to an observed greater familiarity of users towards common KG entities than towards long-tail items, motivates the use of KG entities for both warm and cold-start recommendations.