Abstract:Extracting anomaly causality facilitates diagnostics once monitoring systems detect system faults. Identifying anomaly causes in large systems involves investigating a more extensive set of monitoring variables across multiple subsystems. However, learning causal graphs comes with a significant computational burden that restrains the applicability of most existing methods in real-time and large-scale deployments. In addition, modern monitoring applications for large systems often generate large amounts of binary alarm flags, and the distinct characteristics of binary anomaly data -- the meaning of state transition and data sparsity -- challenge existing causality learning mechanisms. This study proposes an anomaly causal discovery approach (AnomalyCD), addressing the accuracy and computational challenges of generating causal graphs from binary flag data sets. The AnomalyCD framework presents several strategies, such as anomaly flag characteristics incorporating causality testing, sparse data and link compression, and edge pruning adjustment approaches. We validate the performance of this framework on two datasets: monitoring sensor data of the readout-box system of the Compact Muon Solenoid experiment at CERN, and a public data set for information technology monitoring. The results demonstrate the considerable reduction of the computation overhead and moderate enhancement of the accuracy of temporal causal discovery on binary anomaly data sets.
Abstract:The proliferation of sensors brings an immense volume of spatio-temporal (ST) data in many domains for various purposes, including monitoring, diagnostics, and prognostics applications. Data curation is a time-consuming process for a large volume of data, making it challenging and expensive to deploy data analytics platforms in new environments. Transfer learning (TL) mechanisms promise to mitigate data sparsity and model complexity by utilizing pre-trained models for a new task. Despite the triumph of TL in fields like computer vision and natural language processing, efforts on complex ST models for anomaly detection (AD) applications are limited. In this study, we present the potential of TL within the context of AD for the Hadron Calorimeter of the Compact Muon Solenoid experiment at CERN. We have transferred the ST AD models trained on data collected from one part of a calorimeter to another. We have investigated different configurations of TL on semi-supervised autoencoders of the ST AD models -- transferring convolutional, graph, and recurrent neural networks of both the encoder and decoder networks. The experiment results demonstrate that TL effectively enhances the model learning accuracy on a target subdetector. The TL achieves promising data reconstruction and AD performance while substantially reducing the trainable parameters of the AD models. It also improves robustness against anomaly contamination in the training data sets of the semi-supervised AD models.