Abstract:In the domain of traffic safety and road maintenance, precise detection of road damage is crucial for ensuring safe driving and prolonging road durability. However, current methods often fall short due to limited data. Prior attempts have used Generative Adversarial Networks to generate damage with diverse shapes and manually integrate it into appropriate positions. However, the problem has not been well explored and is faced with two challenges. First, they only enrich the location and shape of damage while neglect the diversity of severity levels, and the realism still needs further improvement. Second, they require a significant amount of manual effort. To address these challenges, we propose an innovative approach. In addition to using GAN to generate damage with various shapes, we further employ texture synthesis techniques to extract road textures. These two elements are then mixed with different weights, allowing us to control the severity of the synthesized damage, which are then embedded back into the original images via Poisson blending. Our method ensures both richness of damage severity and a better alignment with the background. To save labor costs, we leverage structural similarity for automated sample selection during embedding. Each augmented data of an original image contains versions with varying severity levels. We implement a straightforward screening strategy to mitigate distribution drift. Experiments are conducted on a public road damage dataset. The proposed method not only eliminates the need for manual labor but also achieves remarkable enhancements, improving the mAP by 4.1% and the F1-score by 4.5%.
Abstract:Traffic signs are important facilities to ensure traffic safety and smooth flow, but may be damaged due to many reasons, which poses a great safety hazard. Therefore, it is important to study a method to detect damaged traffic signs. Existing object detection techniques for damaged traffic signs are still absent. Since damaged traffic signs are closer in appearance to normal ones, it is difficult to capture the detailed local damage features of damaged traffic signs using traditional object detection methods. In this paper, we propose an improved object detection method based on YOLOv5s, namely MFL-YOLO (Mutual Feature Levels Loss enhanced YOLO). We designed a simple cross-level loss function so that each level of the model has its own role, which is beneficial for the model to be able to learn more diverse features and improve the fine granularity. The method can be applied as a plug-and-play module and it does not increase the structural complexity or the computational complexity while improving the accuracy. We also replaced the traditional convolution and CSP with the GSConv and VoVGSCSP in the neck of YOLOv5s to reduce the scale and computational complexity. Compared with YOLOv5s, our MFL-YOLO improves 4.3 and 5.1 in F1 scores and mAP, while reducing the FLOPs by 8.9%. The Grad-CAM heat map visualization shows that our model can better focus on the local details of the damaged traffic signs. In addition, we also conducted experiments on CCTSDB2021 and TT100K to further validate the generalization of our model.