Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
Abstract:Causal and attribution studies are essential for earth scientific discoveries and critical for informing climate, ecology, and water policies. However, the current generation of methods needs to keep pace with the complexity of scientific and stakeholder challenges and data availability combined with the adequacy of data-driven methods. Unless carefully informed by physics, they run the risk of conflating correlation with causation or getting overwhelmed by estimation inaccuracies. Given that natural experiments, controlled trials, interventions, and counterfactual examinations are often impractical, information-theoretic methods have been developed and are being continually refined in the earth sciences. Here we show that transfer entropy-based causal graphs, which have recently become popular in the earth sciences with high-profile discoveries, can be spurious even when augmented with statistical significance. We develop a subsample-based ensemble approach for robust causality analysis. Simulated data, and observations in climate and ecohydrology, suggest the robustness and consistency of this approach.