Abstract:The recent introduction of the Least-Squares Support Vector Regression (LS-SVR) algorithm for solving differential and integral equations has sparked interest. In this study, we expand the application of this algorithm to address systems of differential-algebraic equations (DAEs). Our work presents a novel approach to solving general DAEs in an operator format by establishing connections between the LS-SVR machine learning model, weighted residual methods, and Legendre orthogonal polynomials. To assess the effectiveness of our proposed method, we conduct simulations involving various DAE scenarios, such as nonlinear systems, fractional-order derivatives, integro-differential, and partial DAEs. Finally, we carry out comparisons between our proposed method and currently established state-of-the-art approaches, demonstrating its reliability and effectiveness.
Abstract:This paper presents a novel operational matrix method to accelerate the training of fractional Physics-Informed Neural Networks (fPINNs). Our approach involves a non-uniform discretization of the fractional Caputo operator, facilitating swift computation of fractional derivatives within Caputo-type fractional differential problems with $0<\alpha<1$. In this methodology, the operational matrix is precomputed, and during the training phase, automatic differentiation is replaced with a matrix-vector product. While our methodology is compatible with any network, we particularly highlight its successful implementation in PINNs, emphasizing the enhanced accuracy achieved when utilizing the Legendre Neural Block (LNB) architecture. LNB incorporates Legendre polynomials into the PINN structure, providing a significant boost in accuracy. The effectiveness of our proposed method is validated across diverse differential equations, including Delay Differential Equations (DDEs) and Systems of Differential Algebraic Equations (DAEs). To demonstrate its versatility, we extend the application of the method to systems of differential equations, specifically addressing nonlinear Pantograph fractional-order DDEs/DAEs. The results are supported by a comprehensive analysis of numerical outcomes.