Abstract:Diffusion models, with their robust distribution approximation capabilities, have demonstrated excellent performance in anomaly detection. However, conventional reconstruction-based approaches rely on computing the reconstruction error between the original and denoised images, which requires careful noise-strength tuning and over ten network evaluations per input-leading to significantly slower detection speeds. To address these limitations, we propose a novel diffusion-based anomaly detection method that circumvents the need for resource-intensive reconstruction. Instead of reconstructing the input image, we directly infer its corresponding latent variables and measure their density under the Gaussian prior distribution. Remarkably, the prior density proves effective as an anomaly score even when using a short partial diffusion process of only 2-5 steps. We evaluate our method on the MVTecAD dataset, achieving an AUC of 0.991 at 15 FPS, thereby setting a new state-of-the-art speed-AUC anomaly detection trade-off.
Abstract:Neural network ensembles is a simple yet effective approach for enhancing generalization capabilities. The most common method involves independently training multiple neural networks initialized with different weights and then averaging their predictions during inference. However, this approach increases training time linearly with the number of ensemble members. To address this issue, we propose the novel ``\textbf{Noisy Deep Ensemble}'' method, significantly reducing the training time required for neural network ensembles. In this method, a \textit{parent model} is trained until convergence, and then the weights of the \textit{parent model} are perturbed in various ways to construct multiple \textit{child models}. This perturbation of the \textit{parent model} weights facilitates the exploration of different local minima while significantly reducing the training time for each ensemble member. We evaluated our method using diverse CNN architectures on CIFAR-10 and CIFAR-100 datasets, surpassing conventional efficient ensemble methods and achieving test accuracy comparable to standard ensembles. Code is available at \href{https://github.com/TSTB-dev/NoisyDeepEnsemble}{https://github.com/TSTB-dev/NoisyDeepEnsemble}
Abstract:Sensor-based human activity recognition (HAR) is a paramount technology in the Internet of Things services. HAR using representation learning, which automatically learns a feature representation from raw data, is the mainstream method because it is difficult to interpret relevant information from raw sensor data to design meaningful features. Ensemble learning is a robust approach to improve generalization performance; however, deep ensemble learning requires various procedures, such as data partitioning and training multiple models, which are time-consuming and computationally expensive. In this study, we propose Easy Ensemble (EE) for HAR, which enables the easy implementation of deep ensemble learning in a single model. In addition, we propose input masking as a method for diversifying the input for EE. Experiments on a benchmark dataset for HAR demonstrated the effectiveness of EE and input masking and their characteristics compared with conventional ensemble learning methods.
Abstract:In the research field of activity recognition, although it is difficult to collect a large amount of measured sensor data, there has not been much discussion about data augmentation (DA). In this study, I propose Octave Mix as a new synthetic-style DA method for sensor-based activity recognition. Octave Mix is a simple DA method that combines two types of waveforms by intersecting low and high frequency waveforms using frequency decomposition. In addition, I propose a DA ensemble model and its training algorithm to acquire robustness to the original sensor data while remaining a wide variety of feature representation. I conducted experiments to evaluate the effectiveness of my proposed method using four different benchmark datasets of sensing-based activity recognition. As a result, my proposed method achieved the best estimation accuracy. Furthermore, I found that ensembling two DA strategies: Octave Mix with rotation and mixup with rotation, make it possible to achieve higher accuracy.