Abstract:This paper proposes a novel loss function, called 'Tube Loss', for simultaneous estimation of bounds of a Prediction Interval (PI) in the regression setup, and also for generating probabilistic forecasts from time series data solving a single optimization problem. The PIs obtained by minimizing the empirical risk based on the Tube Loss are shown to be of better quality than the PIs obtained by the existing methods in the following sense. First, it yields intervals that attain the prespecified confidence level $t \in(0,1)$ asymptotically. A theoretical proof of this fact is given. Secondly, the user is allowed to move the interval up or down by controlling the value of a parameter. This helps the user to choose a PI capturing denser regions of the probability distribution of the response variable inside the interval, and thus, sharpening its width. This is shown to be especially useful when the conditional distribution of the response variable is skewed. Further, the Tube Loss based PI estimation method can trade-off between the coverage and the average width by solving a single optimization problem. It enables further reduction of the average width of PI through re-calibration. Also, unlike a few existing PI estimation methods the gradient descent (GD) method can be used for minimization of empirical risk. Finally, through extensive experimentation, we have shown the efficacy of the Tube Loss based PI estimation in kernel machines, neural networks and deep networks and also for probabilistic forecasting tasks. The codes of the experiments are available at https://github.com/ltpritamanand/Tube_loss
Abstract:An efficient system of a queue control and regulation in public spaces is very important in order to avoid the traffic jams and to improve the customer satisfaction. This article offers a detailed road map based on a merger of intelligent systems and creating an efficient systems of queues in public places. Through the utilization of different technologies i.e. computer vision, machine learning algorithms, deep learning our system provide accurate information about the place is crowded or not and the necessary efforts to be taken.
Abstract:Recently, attention-based transformers have become a de facto standard in many deep learning applications including natural language processing, computer vision, signal processing, etc.. In this paper, we propose a transformer-based end-to-end model to extract a target speaker's speech from a monaural multi-speaker mixed audio signal. Unlike existing speaker extraction methods, we introduce two additional objectives to impose speaker embedding consistency and waveform encoder invertibility and jointly train both speaker encoder and speech separator to better capture the speaker conditional embedding. Furthermore, we leverage a multi-scale discriminator to refine the perceptual quality of the extracted speech. Our experiments show that the use of a dual path transformer in the separator backbone along with proposed training paradigm improves the CNN baseline by $3.12$ dB points. Finally, we compare our approach with recent state-of-the-arts and show that our model outperforms existing methods by $4.1$ dB points on an average without creating additional data dependency.