Abstract:The article deals with anomaly detection of Juniper router logs. Abnormal Juniper router logs include logs that are usually different from the normal operation, and they often reflect the abnormal operation of router devices. To prevent router devices from being damaged and help administrator to grasp the situation of error quickly, detecting abnormal operation soon is very important. In this work, we present a new way to get important features from log data of Juniper router devices and use machine learning method (basing on One-Class SVM model) for anomaly detection. One-Class SVM model requires some knowledge and comprehension about logs of Juniper router devices so that it can analyze, interpret, and test the knowledge ac-quired. We collect log data from a lot of real Juniper router devices and clas-sify them based on our knowledge. Before these logs are used for training and testing the One-Class SVM model, the feature extraction phase for these data was carried out. Finally, with the proposed method, the system errors of the routers were dectected quickly and accurately. This may help our com-pany to reduce the operation cost for the router systems.
Abstract:According to some medical imaging techniques, breast histopathology images called Hematoxylin and Eosin are considered as the gold standard for cancer diagnoses. Based on the idea of dividing the pathologic image (WSI) into multiple patches, we used the window [512,512] sliding from left to right and sliding from top to bottom, each sliding step overlapping by 50% to augmented data on a dataset of 400 images which were gathered from the ICIAR 2018 Grand Challenge. Then use the EffficientNet model to classify and identify the histopathological images of breast cancer into 4 types: Normal, Benign, Carcinoma, Invasive Carcinoma. The EffficientNet model is a recently developed model that uniformly scales the width, depth, and resolution of the network with a set of fixed scaling factors that are well suited for training images with high resolution. And the results of this model give a rather competitive classification efficiency, achieving 98% accuracy on the training set and 93% on the evaluation set.