Abstract:The bio-inspired engineering of ovipositing wasps, which employ a reciprocating motion for soft tissue insertion, offers potential advantages in reducing insertion force and minimizing tissue damage. However, the underlying mechanisms of tissue interaction and sparing are not fully understood. In this study, we aim to investigate a multi-part probe designed to mimic the reciprocating motion of ovipositors. A reciprocal insertion model was developed to study the interaction between the probe and soft tissue, and experimental testing was conducted using a force sensor and laser optical technique to gain insights into interacting forces and tissue deformation. The results reveal that during the cutting phase of reciprocal motion, the peak force and average displacement of the soft substrate were approximately 19% and 20% lower, respectively, compared to direct insertion at an overall probe velocity of 1 mm/s. This study presents a novel approach combining mechanical modeling and experimental analysis to explore the force mechanics of the reciprocating insertion method, providing a better understanding of the interaction between the probe and soft tissue.