Abstract:The transformative influence of Large Language Models (LLMs) is profoundly reshaping the Artificial Intelligence (AI) technology domain. Notably, ChatGPT distinguishes itself within these models, demonstrating remarkable performance in multi-turn conversations and exhibiting code proficiency across an array of languages. In this paper, we carry out a comprehensive evaluation of ChatGPT's coding capabilities based on what is to date the largest catalog of coding challenges. Our focus is on the python programming language and problems centered on data structures and algorithms, two topics at the very foundations of Computer Science. We evaluate ChatGPT for its ability to generate correct solutions to the problems fed to it, its code quality, and nature of run-time errors thrown by its code. Where ChatGPT code successfully executes, but fails to solve the problem at hand, we look into patterns in the test cases passed in order to gain some insights into how wrong ChatGPT code is in these kinds of situations. To infer whether ChatGPT might have directly memorized some of the data that was used to train it, we methodically design an experiment to investigate this phenomena. Making comparisons with human performance whenever feasible, we investigate all the above questions from the context of both its underlying learning models (GPT-3.5 and GPT-4), on a vast array sub-topics within the main topics, and on problems having varying degrees of difficulty.
Abstract:Establishing a communication bridge by transferring data driven from different embedded sensors via internet or reconcilable network protocols between enormous number of distinctively addressable objects or "things", is known as the Internet of Things (IoT). IoT can be amalgamated with multitudinous objects such as thermostats, cars, lights, refrigerators, and many more appliances which will be able to build a connection via internet. Where objects of our diurnal life can establish a network connection and get smarter with IoT, robotics can be another aspect which will get beneficial to be brought under the concept of IoT and is able to add a new perception in robotics having "Mechanical Smart Intelligence" which is generally called "Internet of Robotic Things" (IoRT). A robotic arm is a part of robotics where it is usually a programmable mechanical arm which has human arm like functionalities. In this paper, IoRT will be represented by a 5 DoF (degree of freedoms) Robotic Arm which will be able to communicate as an IoRT device, controlled with heterogeneous devices using IoT and "Cloud Robotics".
Abstract:Chikungunya is an emerging threat for health security all over the world which is spreading very fast. Researches for proper forecasting of the incidence rate of chikungunya has been going on in many places in which DARPA has done a very extensive summarized result from 2014 to 2017 with the data of suspected cases, confirmed cases, deaths, population and incidence rate in different countries. In this project, we have analysed the dataset from DARPA and extended it to predict the incidence rate using different features of weather like temperature, humidity, dewiness, wind and pressure along with the latitude and longitude of every country. We had to use different APIs to find out these extra features from 2014-2016. After creating a pure dataset, we have used Linear Regression to predict the incidence rate and calculated the accuracy and error rate.