Abstract:The task of Visual Question Generation (VQG) is to generate human-like questions relevant to the given image. As VQG is an emerging research field, existing works tend to focus only on resource-rich language such as English due to the availability of datasets. In this paper, we propose the first Bengali Visual Question Generation task and develop a novel transformer-based encoder-decoder architecture that generates questions in Bengali when given an image. We propose multiple variants of models - (i) image-only: baseline model of generating questions from images without additional information, (ii) image-category and image-answer-category: guided VQG where we condition the model to generate questions based on the answer and the category of expected question. These models are trained and evaluated on the translated VQAv2.0 dataset. Our quantitative and qualitative results establish the first state of the art models for VQG task in Bengali and demonstrate that our models are capable of generating grammatically correct and relevant questions. Our quantitative results show that our image-cat model achieves a BLUE-1 score of 33.12 and BLEU-3 score of 7.56 which is the highest of the other two variants. We also perform a human evaluation to assess the quality of the generation tasks. Human evaluation suggests that image-cat model is capable of generating goal-driven and attribute-specific questions and also stays relevant to the corresponding image.
Abstract:Multilingual generative language models (LMs) are increasingly fluent in a large variety of languages. Trained on the concatenation of corpora in multiple languages, they enable powerful transfer from high-resource languages to low-resource ones. However, it is still unknown what cultural biases are induced in the predictions of these models. In this work, we focus on one language property highly influenced by culture: formality. We analyze the formality distributions of XGLM and BLOOM's predictions, two popular generative multilingual language models, in 5 languages. We classify 1,200 generations per language as formal, informal, or incohesive and measure the impact of the prompt formality on the predictions. Overall, we observe a diversity of behaviors across the models and languages. For instance, XGLM generates informal text in Arabic and Bengali when conditioned with informal prompts, much more than BLOOM. In addition, even though both models are highly biased toward the formal style when prompted neutrally, we find that the models generate a significant amount of informal predictions even when prompted with formal text. We release with this work 6,000 annotated samples, paving the way for future work on the formality of generative multilingual LMs.