Abstract:Artificial Intelligence has made a significant contribution to autonomous vehicles, from object detection to path planning. However, AI models require a large amount of sensitive training data and are usually computationally intensive to build. The commercial value of such models motivates attackers to mount various attacks. Adversaries can launch model extraction attacks for monetization purposes or step-ping-stone towards other attacks like model evasion. In specific cases, it even results in destroying brand reputation, differentiation, and value proposition. In addition, IP laws and AI-related legalities are still evolving and are not uniform across countries. We discuss model extraction attacks in detail with two use-cases and a generic kill-chain that can compromise autonomous cars. It is essential to investigate strategies to manage and mitigate the risk of model theft.
Abstract:Generative Adversarial Network (GAN) is a current focal point of research. The body of knowledge is fragmented, leading to a trial-error method while selecting an appropriate GAN for a given scenario. We provide a comprehensive summary of the evolution of GANs starting from its inception addressing issues like mode collapse, vanishing gradient, unstable training and non-convergence. We also provide a comparison of various GANs from the application point of view, its behaviour and implementation details. We propose a novel framework to identify candidate GANs for a specific use case based on architecture, loss, regularization and divergence. We also discuss application of the framework using an example, and we demonstrate a significant reduction in search space. This efficient way to determine potential GANs lowers unit economics of AI development for organizations.