Abstract:Graph convolutional networks and their variants have shown significant promise in 3D human pose estimation. Despite their success, most of these methods only consider spatial correlations between body joints and do not take into account temporal correlations, thereby limiting their ability to capture relationships in the presence of occlusions and inherent ambiguity. To address this potential weakness, we propose a spatio-temporal network architecture composed of a joint-mixing multi-layer perceptron block that facilitates communication among different joints and a graph weighted Jacobi network block that enables communication among various feature channels. The major novelty of our approach lies in a new weighted Jacobi feature propagation rule obtained through graph filtering with implicit fairing. We leverage temporal information from the 2D pose sequences, and integrate weight modulation into the model to enable untangling of the feature transformations of distinct nodes. We also employ adjacency modulation with the aim of learning meaningful correlations beyond defined linkages between body joints by altering the graph topology through a learnable modulation matrix. Extensive experiments on two benchmark datasets demonstrate the effectiveness of our model, outperforming recent state-of-the-art methods for 3D human pose estimation.
Abstract:In human pose estimation methods based on graph convolutional architectures, the human skeleton is usually modeled as an undirected graph whose nodes are body joints and edges are connections between neighboring joints. However, most of these methods tend to focus on learning relationships between body joints of the skeleton using first-order neighbors, ignoring higher-order neighbors and hence limiting their ability to exploit relationships between distant joints. In this paper, we introduce a higher-order regular splitting graph network (RS-Net) for 2D-to-3D human pose estimation using matrix splitting in conjunction with weight and adjacency modulation. The core idea is to capture long-range dependencies between body joints using multi-hop neighborhoods and also to learn different modulation vectors for different body joints as well as a modulation matrix added to the adjacency matrix associated to the skeleton. This learnable modulation matrix helps adjust the graph structure by adding extra graph edges in an effort to learn additional connections between body joints. Instead of using a shared weight matrix for all neighboring body joints, the proposed RS-Net model applies weight unsharing before aggregating the feature vectors associated to the joints in order to capture the different relations between them. Experiments and ablations studies performed on two benchmark datasets demonstrate the effectiveness of our model, achieving superior performance over recent state-of-the-art methods for 3D human pose estimation.