Abstract:A competitive baseline in sentence-level extractive summarization of news articles is the Lead-3 heuristic, where only the first 3 sentences are extracted. The success of this method is due to the tendency for writers to implement progressive elaboration in their work by writing the most important content at the beginning. In this paper, we introduce the Lead-like Recognizer (LeadR) to show how the Lead heuristic can be extended to summarize multi-section documents where it would not usually work well. This is done by introducing a neural model which produces a probability distribution over positions for sentences, so that we can locate sentences with introduction-like qualities. To evaluate the performance of our model, we use the task of summarizing multi-section documents. LeadR outperforms several baselines on this task, including a simple extension of the Lead heuristic designed for the task. Our work suggests that predicted position is a strong feature to use when extracting summaries.