Abstract:The aim of this project is to implement and design arobust synthetic speech classifier for the IEEE Signal ProcessingCup 2022 challenge. Here, we learn a synthetic speech attributionmodel using the speech generated from various text-to-speech(TTS) algorithms as well as unknown TTS algorithms. Weexperiment with both the classical machine learning methodssuch as support vector machine, Gaussian mixture model, anddeep learning based methods such as ResNet, VGG16, and twoshallow end-to-end networks. We observe that deep learningbased methods with raw data demonstrate the best performance.
Abstract:Fish diseases in aquaculture constitute a significant hazard to nutriment security. Identification of infected fishes in aquaculture remains challenging to find out at the early stage due to the dearth of necessary infrastructure. The identification of infected fish timely is an obligatory step to thwart from spreading disease. In this work, we want to find out the salmon fish disease in aquaculture, as salmon aquaculture is the fastest-growing food production system globally, accounting for 70 percent (2.5 million tons) of the market. In the alliance of flawless image processing and machine learning mechanism, we identify the infected fishes caused by the various pathogen. This work divides into two portions. In the rudimentary portion, image pre-processing and segmentation have been applied to reduce noise and exaggerate the image, respectively. In the second portion, we extract the involved features to classify the diseases with the help of the Support Vector Machine (SVM) algorithm of machine learning with a kernel function. The processed images of the first portion have passed through this (SVM) model. Then we harmonize a comprehensive experiment with the proposed combination of techniques on the salmon fish image dataset used to examine the fish disease. We have conveyed this work on a novel dataset compromising with and without image augmentation. The results have bought a judgment of our applied SVM performs notably with 91.42 and 94.12 percent of accuracy, respectively, with and without augmentation.