Abstract:To handle unintended changes in the environment by agents, we propose an environment-centric active inference EC-AIF in which the Markov Blanket of active inference is defined starting from the environment. In normal active inference, the Markov Blanket is defined starting from the agent. That is, first the agent was defined as the entity that performs the "action" such as a robot or a person, then the environment was defined as other people or objects that are directly affected by the agent's "action," and the boundary between the agent and the environment was defined as the Markov Blanket. This agent-centric definition does not allow the agent to respond to unintended changes in the environment caused by factors outside of the defined environment. In the proposed EC-AIF, there is no entity corresponding to an agent. The environment includes all observable things, including people and things conventionally considered to be the environment, as well as entities that perform "actions" such as robots and people. Accordingly, all states, including robots and people, are included in inference targets, eliminating unintended changes in the environment. The EC-AIF was applied to a robot arm and validated with an object transport task by the robot arm. The results showed that the robot arm successfully transported objects while responding to changes in the target position of the object and to changes in the orientation of another robot arm.
Abstract:Aiming for a mixbiotic society that combines freedom and solidarity among people with diverse values, I focused on nonviolent communication (NVC) that enables compassionate giving in various situations of social division and conflict, and tried a generative AI for it. Specifically, ChatGPT was used in place of the traditional certified trainer to test the possibility of mediating (modifying) input sentences in four processes: observation, feelings, needs, and requests. The results indicate that there is potential for the application of generative AI, although not yet at a practical level. Suggested improvement guidelines included adding model responses, relearning revised responses, specifying appropriate terminology for each process, and re-asking for required information. The use of generative AI will be useful initially to assist certified trainers, to prepare for and review events and workshops, and in the future to support consensus building and cooperative behavior in digital democracy, platform cooperatives, and cyber-human social co-operating systems. It is hoped that the widespread use of NVC mediation using generative AI will lead to the early realization of a mixbiotic society.