Abstract:The undergoing energy transition is causing behavioral changes in electricity use, e.g. with self-consumption of local generation, or flexibility services for demand control. To better understand these changes and the challenges they induce, accessing individual smart meter data is crucial. Yet this is personal data under the European GDPR. A widespread use of such data requires thus to create synthetic realistic and privacy-preserving samples. This paper introduces a new synthetic load curve dataset generated by conditional latent diffusion. We also provide the contracted power, time-of-use plan and local temperature used for generation. Fidelity, utility and privacy of the dataset are thoroughly evaluated, demonstrating its good quality and thereby supporting its interest for energy modeling applications.
Abstract:Achieving efficiency gains in Chinese district heating networks, thereby reducing their carbon footprint, requires new optimal control methods going beyond current industry tools. Focusing on the secondary network, we propose a data-driven deep reinforcement learning (DRL) approach to address this task. We build a recurrent neural network, trained on simulated data, to predict the indoor temperatures. This model is then used to train two DRL agents, with or without expert guidance, for the optimal control of the supply water temperature. Our tests in a multi-apartment setting show that both agents can ensure a higher thermal comfort and at the same time a smaller energy cost, compared to an optimized baseline strategy.