Abstract:In this paper, performance of a lossy cooperative unmanned aerial vehicle (UAV) relay communication system is analyzed. In this system, the UAV relay adopts lossy forward (LF) strategy and the receiver has certain distortion requirements for the received information. For the system described above, we first derive the achievable rate distortion region of the system. Then, on the basis of the region analysis, the system outage probability when the channel suffers Nakagami-$m$ fading is analyzed. Finally, we design an optimal relay position identification algorithm based on the Soft Actor-Critic (SAC) algorithm, which determines the optimal UAV position to minimize the outage probability. The simulation results show that the proposed algorithm can optimize the UAV position and reduce the system outage probability effectively.
Abstract:This letter proposes a novel anti-interference technique, semantic interference cancellation (SemantIC), for enhancing information quality towards the sixth-generation (6G) wireless networks. SemantIC only requires the receiver to concatenate the channel decoder with a semantic auto-encoder. This constructs a turbo loop which iteratively and alternately eliminates noise in the signal domain and the semantic domain. From the viewpoint of network information theory, the neural network of the semantic auto-encoder stores side information by training, and provides side information in iterative decoding, as an implementation of the Wyner-Ziv theorem. Simulation results verify the performance improvement by SemantIC without extra channel resource cost.
Abstract:This letter proposes a novel relaying framework, semantic-forward (SF), for cooperative communications towards the sixth-generation (6G) wireless networks. The SF relay extracts and transmits the semantic features, which reduces forwarding payload, and also improves the network robustness against intra-link errors. Based on the theoretical basis for cooperative communications with side information and the turbo principle, we design a joint source-channel coding algorithm to iteratively exchange the extrinsic information for enhancing the decoding gains at the destination. Surprisingly, simulation results indicate that even in bad channel conditions, SF relaying can still effectively improve the recovered information quality.