Abstract:Uplift modeling and Heterogeneous Treatment Effect (HTE) estimation aim at predicting the causal effect of an action, such as a medical treatment or a marketing campaign on a specific individual. In this paper, we focus on data from Randomized Controlled Experiments which guarantee causal interpretation of the outcomes. Class and treatment imbalance are important problems in uplift modeling/HTE, but classical undersampling or oversampling based approaches are hard to apply in this case since they distort the predicted effect. Calibration methods have been proposed in the past, however, they do not guarantee correct predictions. In this work, we propose an approach alternative to undersampling, based on flipping the class value of selected records. We show that the proposed approach does not distort the predicted effect and does not require calibration. The method is especially useful for models based on class variable transformation (modified outcome models). We address those models separately, designing a transformation scheme which guarantees correct predictions and addresses also the problem of treatment imbalance which is especially important for those models. Experiments fully confirm our theoretical results. Additionally, we demonstrate that our method is a viable alternative also for standard classification problems.
Abstract:Uplift models support decision-making in marketing campaign planning. Estimating the causal effect of a marketing treatment, an uplift model facilitates targeting communication to responsive customers and efficient allocation of marketing budgets. Research into uplift models focuses on conversion models to maximize incremental sales. The paper introduces uplift modeling strategies for maximizing incremental revenues. If customers differ in their spending behavior, revenue maximization is a more plausible business objective compared to maximizing conversions. The proposed methodology entails a transformation of the prediction target, customer-level revenues, that facilitates implementing a causal uplift model using standard machine learning algorithms. The distribution of campaign revenues is typically zero-inflated because of many non-buyers. Remedies to this modeling challenge are incorporated in the proposed revenue uplift strategies in the form of two-stage models. Empirical experiments using real-world e-commerce data confirm the merits of the proposed revenue uplift strategy over relevant alternatives including uplift models for conver-sion and recently developed causal machine learning algorithms. To quantify the degree to which improved targeting decisions raise return on marketing, the paper develops a decomposition of campaign profit. Applying the decomposition to a digital coupon targeting campaign, the paper provides evidence that revenue uplift modeling, as well as causal machine learning, can improve cam-paign profit substantially.
Abstract:Uplift modeling is an area of machine learning which aims at predicting the causal effect of some action on a given individual. The action may be a medical procedure, marketing campaign, or any other circumstance controlled by the experimenter. Building an uplift model requires two training sets: the treatment group, where individuals have been subject to the action, and the control group, where no action has been performed. An uplift model allows then to assess the gain resulting from taking the action on a given individual, such as the increase in probability of patient recovery or of a product being purchased. This paper describes an adaptation of the well-known boosting techniques to the uplift modeling case. We formulate three desirable properties which an uplift boosting algorithm should have. Since all three properties cannot be satisfied simultaneously, we propose three uplift boosting algorithms, each satisfying two of them. Experiments demonstrate the usefulness of the proposed methods, which often dramatically improve performance of the base models and are thus new and powerful tools for uplift modeling.