Abstract:Model counting is a fundamental task that involves determining the number of satisfying assignments to a logical formula, typically in conjunctive normal form (CNF). While CNF model counting has received extensive attention over recent decades, interest in Pseudo-Boolean (PB) model counting is just emerging partly due to the greater flexibility of PB formulas. As such, we observed feature gaps in existing PB counters such as a lack of support for projected and incremental settings, which could hinder adoption. In this work, our main contribution is the introduction of the PB model counter PBCount2, the first exact PB model counter with support for projected and incremental model counting. Our counter, PBCount2, uses our Least Occurrence Weighted Min Degree (LOW-MD) computation ordering heuristic to support projected model counting and a cache mechanism to enable incremental model counting. In our evaluations, PBCount2 completed at least 1.40x the number of benchmarks of competing methods for projected model counting and at least 1.18x of competing methods in incremental model counting.
Abstract:Model counting, a fundamental task in computer science, involves determining the number of satisfying assignments to a Boolean formula, typically represented in conjunctive normal form (CNF). While model counting for CNF formulas has received extensive attention with a broad range of applications, the study of model counting for Pseudo-Boolean (PB) formulas has been relatively overlooked. Pseudo-Boolean formulas, being more succinct than propositional Boolean formulas, offer greater flexibility in representing real-world problems. Consequently, there is a crucial need to investigate efficient techniques for model counting for PB formulas. In this work, we propose the first exact Pseudo-Boolean model counter, PBCount, that relies on knowledge compilation approach via algebraic decision diagrams. Our extensive empirical evaluation shows that PBCount can compute counts for 1513 instances while the current state-of-the-art approach could only handle 1013 instances. Our work opens up several avenues for future work in the context of model counting for PB formulas, such as the development of preprocessing techniques and exploration of approaches other than knowledge compilation.
Abstract:Inference and prediction of routes have become of interest over the past decade owing to a dramatic increase in package delivery and ride-sharing services. Given the underlying combinatorial structure and the incorporation of probabilities, route prediction involves techniques from both formal methods and machine learning. One promising approach for predicting routes uses decision diagrams that are augmented with probability values. However, the effectiveness of this approach depends on the size of the compiled decision diagrams. The scalability of the approach is limited owing to its empirical runtime and space complexity. In this work, our contributions are two-fold: first, we introduce a relaxed encoding that uses a linear number of variables with respect to the number of vertices in a road network graph to significantly reduce the size of resultant decision diagrams. Secondly, instead of a stepwise sampling procedure, we propose a single pass sampling-based route prediction. In our evaluations arising from a real-world road network, we demonstrate that the resulting system achieves around twice the quality of suggested routes while being an order of magnitude faster compared to state-of-the-art.
Abstract:Over the last few decades, deforestation and climate change have caused increasing number of forest fires. In Southeast Asia, Indonesia has been the most affected country by tropical peatland forest fires. These fires have a significant impact on the climate resulting in extensive health, social and economic issues. Existing forest fire prediction systems, such as the Canadian Forest Fire Danger Rating System, are based on handcrafted features and require installation and maintenance of expensive instruments on the ground, which can be a challenge for developing countries such as Indonesia. We propose a novel, cost-effective, machine-learning based approach that uses remote sensing data to predict forest fires in Indonesia. Our prediction model achieves more than 0.81 area under the receiver operator characteristic (ROC) curve, performing significantly better than the baseline approach which never exceeds 0.70 area under ROC curve on the same tasks. Our model's performance remained above 0.81 area under ROC curve even when evaluated with reduced data. The results support our claim that machine-learning based approaches can lead to reliable and cost-effective forest fire prediction systems.