Abstract:Referral workflow inefficiencies, including misaligned referrals and delays, contribute to suboptimal patient outcomes and higher healthcare costs. In this study, we investigated the possibility of predicting procedural needs based on primary care diagnostic entries, thereby improving referral accuracy, streamlining workflows, and providing better care to patients. A de-identified dataset of 2,086 orthopedic referrals from the University of Texas Health at Tyler was analyzed using machine learning models built on Base General Embeddings (BGE) for semantic extraction. To ensure real-world applicability, noise tolerance experiments were conducted, and oversampling techniques were employed to mitigate class imbalance. The selected optimum and parsimonious embedding model demonstrated high predictive accuracy (ROC-AUC: 0.874, Matthews Correlation Coefficient (MCC): 0.540), effectively distinguishing patients requiring surgical intervention. Dimensionality reduction techniques confirmed the model's ability to capture meaningful clinical relationships. A threshold sensitivity analysis identified an optimal decision threshold (0.30) to balance precision and recall, maximizing referral efficiency. In the predictive modeling analysis, the procedure rate increased from 11.27% to an optimal 60.1%, representing a 433% improvement with significant implications for operational efficiency and healthcare revenue. The results of our study demonstrate that referral optimization can enhance primary and surgical care integration. Through this approach, precise and timely predictions of procedural requirements can be made, thereby minimizing delays, improving surgical planning, and reducing administrative burdens. In addition, the findings highlight the potential of clinical decision support as a scalable solution for improving patient outcomes and the efficiency of the healthcare system.
Abstract:In response to the pressing need for advanced clinical problem-solving tools in healthcare, we introduce BooksMed, a novel framework based on a Large Language Model (LLM). BooksMed uniquely emulates human cognitive processes to deliver evidence-based and reliable responses, utilizing the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) framework to effectively quantify evidence strength. For clinical decision-making to be appropriately assessed, an evaluation metric that is clinically aligned and validated is required. As a solution, we present ExpertMedQA, a multispecialty clinical benchmark comprised of open-ended, expert-level clinical questions, and validated by a diverse group of medical professionals. By demanding an in-depth understanding and critical appraisal of up-to-date clinical literature, ExpertMedQA rigorously evaluates LLM performance. BooksMed outperforms existing state-of-the-art models Med-PaLM 2, Almanac, and ChatGPT in a variety of medical scenarios. Therefore, a framework that mimics human cognitive stages could be a useful tool for providing reliable and evidence-based responses to clinical inquiries.