Abstract:This study introduces an advanced methodology for automatically identifying minor deformations in flat walls caused by vibrations from nearby railway tracks. It leverages high-density Terrestrial Laser Scanner (TLS) LiDAR surveys and AI/ML techniques to collect and analyze data. The scan data is processed into a detailed point cloud, which is segmented to distinguish ground points, trees, buildings, and other objects. The analysis focuses on identifying sections along flat walls and estimating their deformations relative to the ground orientation. Findings from the study, conducted at the RGIPT campus, reveal significant deformations in walls close to the railway corridor, with the highest deformations ranging from 7 to 8 cm and an average of 3 to 4 cm. In contrast, walls further from the corridor show negligible deformations. The developed automated process for feature extraction and deformation monitoring demonstrates potential for structural health monitoring. By integrating LiDAR data with machine learning, the methodology provides an efficient system for identifying and analyzing structural deformations, highlighting the importance of continuous monitoring for ensuring structural integrity and public safety in urban infrastructure. This approach represents a substantial advancement in automated feature extraction and deformation analysis, contributing to more effective management of urban infrastructure.